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A VARIATIONAL PRINCIPLE FOR MAGNETOHYDRODYNAMIC CHANNEL FLOW
by Norman C. Wenger

Lewis Research Center

SUMMARY

A variational formulation is presented for a class of magnetohydrodynamic (MHD)
channel flow problems. This formulation yields solutions for the fluid velocity and the
induced electric potential in a channel with a uniform transverse static magnetic field,
The channel cross section is constant but arbitrary, and the channel walls can be either
insulators or conductors with finite electrical conductivity. Electric currents are per-
mitted to enter and leave the channel walls so that the solutions are suitable for MHD
generator and pump applications. An example of a square channel with conducting walls
is solved as an illustration.

INTRODUCTION

The study of magnetohydrodynamic (MHD) channel flow has received considerable
attention in the past decade. This interest has been motivated by three principle applica-
tions; the MHD generator, the MHD pump, and the electromagnetic flowmeter.

The general model that is normally considered in these studies consists of an infi-
nitely long channel of constant cross section with a uniform static magnetic field applied
transverse to the axis of the channel. The walls of the channel are either insulators,
conductors, or a combination of insulators and conductors depending on the intended ap-
plication.

For example, in the MHD generator and pump cases, the channel cross section is
normally rectangular with insulated walls perpendicular to the magnetic field and con-
ducting walls parallel to the magnetic field. For the electromagnetic flowmeter case,
the channel cross section is normally circular with conducting walls.

In order to carry out an analytical solution for MHD channel flow, it is generally
necessary to make simplifying assumptions such as requiring the channel walls to be
either perfect conductors or perfect insulators or requiring the channel walls to be very
thin. These and other simplifications often greatly limit the usefulness of the results.



This is particularly true for the electromagnetic flowmeter case since the thin wall ap-
proximation is often not valid for liquid metal applications and the wall  conductivity is
neither zero nor infinite, In addition, many analytical solutions give results in the form
of infinite series which converge poorly for the large values of the static magnetic field
that are encountered in practice.

To alleviate some of these difficulties, Tani (ref. 1) developed a variational formu-
lation for the solution of MHD channel flow problems. His formulation gives solutions
for the velocity profile and the induced magnetic field distribution in the channel for an
arbitrary channel cross section. It requires, however, that the channel walls be either
perfect conductors or insulators and that the admissible functions for the velocity and
induced magnetic field satisfy appropriate boundary conditions.

In this report, a variational formulation is presented that gives solutions for the
velocity profile and the electric potential distribution in a channel of arbitrary cross sec-
tion. It also gives solutions for the electric potential distribution in the channel walls,
The walls of the channel can be a combination of insulators and conductors but the con-
ductors may have a finite conductivity. In addition, the admissible functions for the
velocity and potential need not satisfy any prescribed boundary conditions. Moreover,
the formulation is sufficiently general to allow electric currents to enter and Ieave the
channel walls so that the solutions obtained are suitable for the MHD generator and pump
applications.

The report concludes with an example that consists of a square channel with conduct-

ing walls of finite conductivity.

THE MODEL

A cross section of a generalized channel is shown in figure 1, It consists of the
fluid duct Sf bounded by the conducting walls S c and the insulated walls Si' The con-
tours Cf c and Cfi denote the fluid-conducting wall interface and the fluid-insulated wall
interface, respectively. The contour CCO denotes the outer edge of the conducting wall,
The vector n is the unit normal to the contours with the positive direction as shown.

The applied static magnetic field BO is parallel to the x-axis and is uniform with
respect to y and z. The applied or generated current density at the outer edge of the
conducting wall J‘,j1 is considered positive when directed outward, It is assumed that the
net current entering the channel cross section due to Ja is zero, so that the two-
dimensional features of the model are retained.
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Figure 1. - Cross section of generalized channel.

BASIC EQUATIONS

The basic equations to be used are the standard MHD equations for steady-state
conditions which consist of Maxwell's equations, the momentum transport equation, and
the generalized Ohm's law. These are

VX‘_E.=6 | (1a)
YxB=pJ (1b)
V.B=0 (1c)
p(G-V)§=—Vp+3><§+nV§ (1d)
J = of(E +V ><—]§) (1le)

where E, E, :f, and B, are the electric field intensity, magnetic flux densi’qL, electric
current density, and magnetic permeability of free space, respectively; and V, p, 7,
Op> and p are the fluid velocity, density, viscosity, electrical conductivity, and pres-
sure, respectively.

Equations (1a) to (1e) are based on the assumptions that the fluid is homogeneous and
incompressible, the magnetic permeability of the fluid is the same as that of free space,
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the electric charge density and Hall current are negligible, and the fluid flow is laminar,
Tt may be argued that the last assumption of nonturbulent flow greatly limits the useful-
ness of the results since many flows in practice are turbulent. However, it has been
found experimentally (ref. 2) that the onset of turbulence occurs at a much higher
Reynolds number in MHD flow than for ordinary flow due to the suppression of turbulence
by the static magnetic field.

The five basic equations (la) to (1e) can be combined to give two coupled equations of
second order. First, an electric potential U which satisfies equation (1a) identically
can be defined as

E =-vU (2a)

Next, substituting J from equation (le) into (1b) and then taking the divergence of equa-
tion (1b) give

V2U=v. (VxB) (2b)

where equation (2a) has been used to eliminate E The second equation can be obtained
by substituting J from equation (le) into (1d) and then eliminating E using equation (2a)

giving

—

p(V . V){’/' = -Vp - cf[VU X B - (§ X E) X _é] + 77V2_X7 (2¢)

Due to the uniformity of the channel cross section and the applied magnetic field with
respect to the z-axis, all quantities in the basic equations are independent of z except for
the pressure which is linear in z (ref. 3). In addition, it can be shown that the fluid ve-
locity {/: has only a z-component VZ and that E» and ,_f have only x- and y-components
(ref. 4). Furthermore, the total magnetic field B consists of the applied field B, inthe
x-direction and an induced field Bi in the z-direction.

Since the velocity does not vary with z and has only a z-component, the first term in
equation (2c¢) vanishes. Expanding the vector cross products and taking the z-component
of equation (2c¢) along with equation (2b) give the following governing equations:

2 2 ov
U "0 _ o__§:o (3a)
aX2 ay2 ay
2 2 2
"V 37V o.B o.B
Z . z_10p, 030 foVZ=O (3b)
ax2 ayz n 92 n ay n



These equations apply, of course, only in the fluid duct region Sf. In the conducting wall
region Sc’ equation (3a) applies with VZ = 0. In the insulated wall region Si’ equa-
tion (3a) also applies with VZ = 0 but it need not be solved.

Equations (3a) and (3b) are not unique governing equations in the sense that variables
other than the velocity and electric potential can be selected for retention. Tani (ref. 1),
for example, eliminated the electric potential but retained the velocity and the induced
magnetic field yielding a different but equivalent set of governing equations.

In addition to the basic equations, appropriate boundary conditions must be specified
to determine the solution uniquely. These conditions are

=0 on C,. and Cg (4a)

(4b)

0 VU nl -0,VU - n| = 0 on CfC (4c)
f w
VU - ﬁl =0 on Cy (4d)
f
o,VU - n +Ja=0 on C., (4e)
W
where and refer to evaluating the quantity on the fluid or wall side of the contour,
f w
respectively.

The boundary condition equations (4a) to (4e) require the following:

(1) The fluid velocity must vanish on the fluid-wall interfaces Cfc and Cﬁ.

(2) The electric potential must be continuous across the fluid-conducting wall inter-
face Cf c

(3) The component of the electric current normal to the fluid-conducting wall inter-
face Cfc must be continuous.

(4) The component of the electric current normal to the fluid-insulated wall inter-
face Cfi must vanish.

(5) The component of the electric current normal to the outer edge of the conducting
wall Cco must equal the applied or generated current Ja.

In solving the equations, it is convenient to work with dimensionless quantities. This
can easily be accomplished by defining L and V0 to be a characteristic length and



characteristic velocity of the channel. Let

X=%x , Y=Y, z=2 dimensionless coordinates (5a)
L L L
w=_U dimensionless potential (5b)
B LV
o "o
VZ
V=_=2 dimensionless velocity (5¢)
Vo
%
M=BL{— Hartmann number (5d)
n
-1.2 ap
P =— = dimensionless pressure gradient (5e)
)
W _ oz
)
Ia
JO =" dimensionless applied or generated current (51f)
BV o
0 0w
)
y =Y ratio of wall-to-fluid conductivity (5¢)
%)
f

Combining equations (5a) to (5g) with equations (3a) and (3b) yields the following set of

equations in dimensionless form:

2 2
W, TW_2V_y on § (6a)
X2 av? oy
22V 2%V 2 W .2
——+——+P + M " — - MV =0 on S (6b)
%2 ay2 Y
2
WL AW o g (6¢)
ax2  5v2




Likewise, combining equations (5a) to (56g) with equations (4a) to (4e) gives the following

set of dimensionless boundary condition equations:

e and Cy
WI - Wl = on Cfc
f w
1 [dY oW oWy [dY W W) | _ on C;_
9 dX 83X 02Y 9 dX X oY
1+(d—Y> f 1+<£) w
dX dX
1 d_Y_M_?LV_ _O on Cf]_
9 dX X 9Y
1+ gX) f
dX
1 a¥ W _awW) | on €,
dX X 9Y o
()
1+{== W
daxX
The unit normal vector n has been replaced by
dY 5 4a
ax XY

(6d)

(6e)

(61)

(6g)

where éx and a_ are the unit vectors in the X- and Y-directions, respectively. The
sign of the square root must be selected so that the positive direction for n is as shown

in figure 1,

VARIATIONAL EXPRESSION

The goal of this section is to construct a functional of the dependent variables V



and W so that the associated Euler-Lagrange equations are the basic governing equations
(6a) to (6¢c) and where the corresponding natural boundary conditions are the prescribed
boundary condition equations (6d) to (6h). This construction is performed by summing
terms that are obtained by multiplying each governing equation and boundary condition
equation by a suitable function and then integrating over the corresponding area or contour

where the equation is valid.
Let 6V and O0W be arbitrary functions of X and Y that are continuous with piece-

wise continuous first derivatives. The integrals

2 2
I, =2 H+Q—V+PO+M2§3"_-M2V 5V dX ay (7a)
ax2  ay?2 oY
St
2 °w 2w ov
I = 2M W "W _ 9V 5w ax dY (7Tb)
2 2 2 9y
0X% oY
St
2 %w  o%w
I3 = 2yM 2 4y T sw dgx dy (7c)
5x2  av?
SC

are identically zero for any 6V and W since the quantities in brackets | ] are identi-

cally zero by virtue of equations (6a) to (6c).
Four additional integral expressions that are identically zero can be obtained from

the boundary condition equations (6d) to (6h) by integrating along appropriate contours.

Recalling that the differential length along a contour is given by Y1 + (dY/dX)2 dX, these
integral expressions can be defined as

1, = -2 <ﬂ ay - W dX) ] y(aﬂ ay - W ax) | |ow (74)
X oY X oY
Cfc f w
I, = -2M° Wy - W oW (Te)
X oY
Cfi f



2
-9y M2 ﬁdY-ﬂdx-Jo\/1+<§X>dx 5W

I, =
X 2Y dxX
Cco w
I, =2 [V](aﬁ—VdY—a—éde—M26WdX>
X 3Y
CeetCri f

(7f)

(Tg)

These integrals vanish since the quantities in brackets are zero by virtue of the boundary

condition equations (6d) to (6h).

The symbol & can be defined as the variation operator so that the functions 6V

and O0W can be considered as the variation of V and W, respectively.

In addition, the

& operator commutes with 3/0X and 9/0Y since X and Y are independent variables.
Using these properties along with Green's lemma, the integrals I1 to I,7 can be inte-

grated by parts and combined to give

7
z I =6F
n=1
where
2 2 2 2
F = 2pv_<ﬂ)_<i‘_’>-1v12v2+<ﬁ> +<ﬂ>-2va—‘¥ dx dy
o X oY X Y Y
Sg

oX

2
+ 2y M2 W I, 1+<d_Y> ax
dax
Cco w

Since each I (n=1, . .
Zero.

V[ﬁ—‘idY

(8a)

OV g
oY

f

(8b)

., T) is identically zero, the variation of the functional F is
Thus, F is stationary; that is, first order changes in V and W about their true
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values produce only second order changes in F,
Another way of stating this result is that of all functions that are continuous with

piecewise continuous first derivatives, the particular pair of functions for V and W
that make ¥ stationary, satisfy both the basic equations (6a) to (6c) and the boundary
condition equations (6d) to (6h) and, hence, are the desired solutions.

Even though F was shown to be stationary, it does not necessarily mean that F
has a maximum or minimum at the true solution for V and W. For example, as V
and W are varied from their true values, F may always increase, always decrease, or
either increase or decrease depending on how V and W are varied. To determine
which case corresponds to the F under consideration the quantity F(V + 6V, W + W) -

F(V,W) is computed giving

2 .2
F(V+ 6V, W + 8W) - F(V,W) = 2 [ﬂ+ﬂ+po_M2V+M2ﬂ 5V
0x? a2y oY
5t
2 2 2 2
+M?'E—~W+_9W-ﬂ ow hax ay + 2yM? [ [EW, EWlew gy gy
x? ay? Y ex? ay?
SC
- oM Way - W k) | - (W gy - W ax) | [ow
X Y X Y
C f W,

0X Y X Y

Cri f Ceo

3
3401+ () ax|ow
ax
e *Cri

2 2 2 . 2
0oV + 90V +M2 o 0w +M2 20w + BV ax dy
X Y X Y

f

2 2
. (aaw) . <aaw) J— 20V 4y _ 3V o\ sy
X Y \ox Y

Sc CeetCri f

- 2M2 f_w dy - aw dX]GW - 2yM2 lj<ﬂ dy - W dX)

2 [V]<_35VdY-——35de-M2 6WdX>’

X Y

w C f

S

(9)
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A careful examination of equation (9) reveals that the first six integrals vanish be-
cause the quantities in brackets [ ] are identically zero. The remaining integrals are of
second order in 6V and OW. This result is not surprising since F was constructed so
that all first order terms in 6V and O0W vanished. Of the three remaining integrals in
equation (9), two are negative definite and the last can be of either sign. Thus, F has
neither a minimum nor maximum at the true values for V and W, However, if the class
of admissible functions for V and W is restricted so that the last integral must vanish,
then F corresponds to a maximum at the true values for V and W since then
F(V +08V, W + 6W) - F(V,W) =0,

A study of the last integral in equation (9) reveals that the proper restriction to im-
pose is that V must vanish on the contours Cfc and Cﬁ. An alternate choice which
also makes the last integral vanish is to specify 3V/dn on Cfc and Cﬁ. This choice is
useless, however, since it would require solving the problem another way first to deter-
mine the correct value for aV/an.

Requiring V to vanish on Cfc and Cfi may provide a great simplification in many
problems in obtaining approximate values for V and W since finding a maximum for F
is often much easier than finding a stationary point. Moreover, requiring V to vanish on
Cfc and Cfi completely eliminates one integral in the expression for F given by equa-
tion (8b),

Before a solution for V and W can be determined, values for P0 and JO must be
specified. The dimensionless pressure gradient P0 must be a constant as previously
noted. The dimensionless current density JO, however, can be specified as a function of
the coordinates along the contour Cco' Since the basic equations and boundary condition
equations are linear in V, W, PO, and Jo, solutions for V and W can be obtained by
superimposing solutions for P_ # 0 and J, = 0 with those for P_ =0 and J £ 0.

To complete the study of the variational expression, it is desirable to determine its
physical significance.

PHYSICAL SIGNIFICANCE OF VARIATIONAL EXPRESSION

Consider the power or energy balance that exists in MHD channel flow. The power
per unit length that is supplied to the fluid by the pressure gradient PAp is given by

o op _ 2
Prp= /;Vdedy—nVO/POVdXdY (102)
S¢ Sg

If this quantity is negative, it simply means that the channel is acting as a pump.
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The dissipative terms consist of the viscous losses in the fluid P,_, the ohmic losses

in the fluid Po , and the ohmic losses in the conducting walls P(7 . Expressing each of
t w
these in terms of the power dissipated per unit length along the channel gives

2 2
3%V 84V 2 9
o f i), aay <V’ <ﬂ)(ﬂ> ax ay
a2 ayl aX aY
S S
- nvf) V(i‘—’ ay - &V dX> (10b)
X oY
Ctc*Cri f
P =0 U5 _9Ug +VB£2dxdy
o f ax X .ay zZo0
S
29 oWV fow )2
=nV0M 22 +[—/—-V) |dXdy (10c)
aX Y
St
oU ~ U . |2
P =0 -3 -—a dx dy
Tw w ox X ay y
S

(10d)

1l
3
<
o N
h{
=
N
—
E
\_/'\’
+
/_a
E
N———
L1
&
Q,
i

Equation (10b) reveals that the viscous losses in the fluid can be split into two parts;

the volume losses P77 and the surface losses P77 where
A s

12



2 2
P = V2 (QX> + (VY lax ay (10e)
Ny o X oY

P =-qv2 ' ?XdY-Qde> (10¢)
Mg o £):4 Y

CteCry £

The surface losses are zero when the boundary condition is imposed that requires V to
vanish on Cf c and Cﬂ.

The remaining term to be considered is the loss due to the current Ja‘ Since Ja is
positive by definition when it is directed outward, the power that is supplied to an ex-
ternal load per unit length of the channel P J is given by

a
dy \2 2 9 ay\2
P, =- UJ. 41 +(H dx = -nVoyM WJ 41+ (=) &X (10g)
a a dx dx
CCO CCO

If PJ is negative, it simply indicates that power is being supplied by an external source.
a
Since power is conserved, the power balance for the channel can be expressed as

P, =P +P +PO_ +P, +P (11)

Ap~ Ty T g J

f w a

Comparing the expression for the functional F given by equation (8b) with the various
power dissipation terms given by equations (10a) to (10g) reveals that F can be ex-
pressed as

2 —_ - - - — -
nVgF=2P, -P -P_ -P, -2P 2P

(12)
v f w Mg a
A word of caution is in order at this point. The expression for F given by equa-
tion (8b) is defined and valid for an arbitrary choice for V and W. Likewise, the power
dissipation terms P77 , P0 , ete., given by equations (10a) to (10g) are valid for arbi-
A f
trary values for V and W, Thus, equation (12) is valid, in general. However, equa-

13



tion (11) which is the power balance for the channel is only valid for the correct solutions
for V and W,

As shown in the previous section, the stationary point for ¥ corresponds to the true
solutions for V and W. For these values only, equations (11) and (12) can be combined
to give

F,= — @ (13)

where it has been recognized that P77 vanishes for the true V. Thus, the stationary

s
value of F is proportional to the difference between the power supplied to the fluid by
the pressure gradient and the electrical power delivered to an external load.
An important special case occurs for Ja = 0 which yields

F =/ P_V dX dY (14)
S

where PA has been replaced using equation (10a), Since the dimensionless pressure
gradient P o is a constant, the stationary value for F is proportional to the average
fluid velocity in the channel. This is a very important result since the average velocity,
which is often the main quantity of interest, is proportional to a stationary quantity which
can be computed to good accuracy.

If the boundary condition V =0 on Cfc and Cfi is satisfied by all admissible
functions, F has a maximum at its stationary point as noted in the previous section. The
maximum for F using a subset of the class of admissible functions for V and W will
be less than the maximum for F using the entire class of admissible functions, Thus, a
lower limit for the average velocity can be easily found by using any admissible function.

EXAMPLE: SQUARE CHANNEL WITH CONDUCTING WALLS
Variational Solution
A square channel is shown in figure 2 using the dimensionless coordinates. The
characteristic length for the channel L has been chosen as one-half its height or width
so that its inner corners are located at (1,1), (1,-1), (-1,1), and (-1,-1). The normal-

ized wall thickness t is the actual wall thickness divided by L.

14



1+t

Figure 2. - Cross section of square channel with conduct-
ing walls.

Approximate solutions for the velocity and electric potential will be obtained using
the Ritz technique. In this technique, the velocity and potential are expressed in terms
of known functions of X and Y that approximate the true solution but contain adjustable
parameters >\1, . e, An. The approximate solutions for V and W are then substi-
tuted into the expression for F given by equation (8b) and the indicated integrations with
respect to X and Y are performed. This leaves F as a function of the parameters
>\1, Cee A and the characteristic parameters of the channel Po’ v, M, and JO. As-
10 ¢ o An, the sta-
tionary value of F can be found by maximizing F with respect to 7\1, .+« ., A_. The

n
corresponding values for >\1, ce A when substituted into the approximate functions

suming that V vanishesat X =+1 and Y = 1 for all values of 2

for V and W will yield the closest approximations to the velocity and potential that are
possible for the class of functions used.

In order to determine the accuracy of the solutions obtained using the Ritz technique,
a sequence of approximations is normally used. In this method, a suitable, complete, in-
finite set of functions is selected such as sine or cosine harmonics, Bessel functions,
etc., so that some linear combination of them is capable of representing the solution.
For the MHD channel flow problem these functions must be capable of representing any
continuous function with a piecewise continuous derivative over the channel cross section.

The procedure consists of first obtaining an approximate solution using a linear com-
bination of a finite number of these functions where the adjustable parameters 7\1 s e e e
xn correspond to the coefficients of these functions. The problem is then repeatedly
solved, each time increasing the number of functions used. By comparing the results
from successive approximations, an estimate of the accuracy and convergence rate can be
obtained.

15



In many problems, however, much is already known about the solution so that the
trial functions can be tailored to more accurately approximate the solution thereby re-
ducing the number of adjustable parameters required. This alternate procedure does not
allow the error in the approximation to be easily estimated but it is much easier to use
computationally since fewer adjustable parameters are involved. This alternate proce-
dure will be followed in this example,

The solution for the square channel will be determined for PO =1 and JO = 0. Let
the trial functions for V and W be given by

oy 0 0=X=1
V(X,Y)=A1 1-X 1-Y (15a)
0=Y=1
Bl 62 63 0=X=1+t
WEX,Y) = ClY +C2Y 1 +C3X (15b)
0=Y=1+t

where Al’ Cl’ C2, C3, oy, O, Bl, 32, and 83 are adjustable parameters. Because
of the symmetry of the problem, it is only necessary to specify V and W in the first
quadrant. For other quadrants, V and W can be found using the relations V(X,Y) =
V(X,-Y) = V(-X,Y) and W(X,Y)=W(-X,Y)=-W(X,-Y). Since the admissible functions
for V and W must be continuous with piecewise continuous derivatives, all exponents
in equations (15a) and (15b) must be 1 or greater.

Trial functions of the form given by equations (15a) and (15b) have proven to be very
useful in solving MHD channel flow problems of this type since the velocity profile, for
example, can go from a parabolic (oz1 = Qg = 2) to nearly slug flow (al, o large) by
merely varying two parameters.

Substituting equations (15a) and (15b) into the expression for F given by equa-
tion (8b) yields after performing the integrations

F = [v] [A]w] - [¥]T[D] (16)
where
Ay 311 299 243 dy
[¥]=1C [Al= (a1 259 293 [P}=] 0
Cy dy3 g3 dg3 0
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2 2 2 2
80/102 80/1012

a = - -
1 (ay + D2ay - D@y +1) (g +1)(20y - 120 +1)
2.2 2
) 16 M 7011012
(oz1 + 1)(2011 + 1)(a2 + 1)(:20122 +1)
4M2a a C
= 1 2|— 1, 3
12 Bl + O Lal +1 ([33 + 1)(,83 +ay + 1)
2
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In obtaining equation (16), the ''thin wall'' approximation t << 1 was made so that
the results are directly comparable with published values. This approximation did not
have to be made in order to use this formulation but was done since only thin wall results
are available for comparison.

The maximum value for F and the corresponding values for the parameters were
found using a computer. Since the normalized cross-sectional area of the channel is 4
and _Po = 1, the proportionality constant between th_e_ average dimensionless fluid veloc-
ity V and Fg is 1/4 (see eq. (14)). Values for V as a function of the Hartmann num-
ber M are shown in figure 3 for various values of conduction parameter yt.

The results show that the average fluid velocity decreases as M and yt increase.
This decrease can be explained as follows: For M # 0, an electric current is induced in
the fluid due to the fluid motion. If yt = 0, the wall is an insulator and, hence, any in-
duced current must form a closed path entirely in the fluid. Thus, the total electromag-
netic force on the fluid is zero. However, since the electromagnetic force is not iden-
tically zero everywhere, the velocity profile of the fluid is distorted which, in turn, in-
creases the viscous force and consequently reduces the average fluid velocity. For
yt # 0, the induced current path is located partially in the wall so that there is a net elec-
tromagnetic force in addition to the viscous force acting to reduce the fluid velocity.

Comparison of Results

The variational solution can be compared with other solutions for some limiting
cases. For M = 0, the average dimensionless velocity from the variational solution is
0. 1403, independent of yt, as compared with the exact value of 0.1406, which can be
computed using Fourier expansion techniques.
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The exact solution for the average flow in a rectangular channel with insulated walls
(yt = 0) and perfectly conducting walls (yt = ©) has been obtained by Shercliff (ref. 3) and
Chang and Lundgren (ref. 5), respectively. Each of these solutions is in the form of a
series which converges poorly for large M. Williams (ref. 6), however, transformed
these solutions and obtained asymptotic forms for the average velocity for large M.
These solutions, simplified for P0 = 1 and the square channel, are as follows:

V:-.l_ 1- 32 "'-l'l' 4 +@<-l§> -}/t—_—oo
;;1_1__1_2,43_;&&_@)%% yi= o
M2l M m3/2 m/2 M M
100 —
F Solution
L Variational
— ———— Williams' for yt=0
—_ —-— Williams' for yt=o0
B Conduction
- parameter,
1
Ir-O
= 17—
g C
g L
= 00—
- T AT FE 1Y R N R Y A R A O
107! 100 10! 10

Hartmann number, M

Figure 4. - Comparison of variational solution with Williams (ref. 6) asymptotic solutions for average
dimensionless velocity.
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A comparison between the variational solutions and these asymptotic forms is shown
in figure 4. The agreement between the two solutions for yt = 0 is excellent for M = 10.
The variational solution for t= 104 is always slightly less than the asymptotic form for
yt = «©, The difference, however, decreases to less than 0.1 percent at M = 1000.

A Fourier expansion type solution for the rectangular channel with thin walls of
finite conductivity has recently been obtained by Chu (ref. 7). A comparison of his solu-
tion with the variational solution is shown in figure 5. The agreement between these two
solutions is also quite good. As shown, the variational solution for the average velocity
is always slightly less than the series solution value. This is due to the fact that the
computed maximum for F, and, hence, the average velocity, is always less than or equal
to the true maximum for F since the trial functions used are a subset of the entire class
of admissible functions. '

Conduction parameter,
'

0.1 O

Solution

Variational
Chu

Average dimensionless velocity, V

Hartmann number, M

Figure 5. - Comparison of variational solution with Chu's
(ref. 7) solution for average dimensionless velocity.
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CONCLUDING REMARKS

A variational formulation was presented for a class of MHD channel flow problems.
A stationary expression was developed that yielded solutions for the fluid velocity and the
induced electric potential in a generalized channel. An example of a square channel with
conducting walls was solved as an illustration. Very good agreement was obtained be-
tween the variational solution for the average velocity in the square channel and other
published values.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 24, 1969,
120-27,
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APPENDIX - SYMBOLS

matrix (see eq. (16))
adjustable parameter
th

ij " element of matrix [A]

unit vectors in x- and
y-directions

magnetic flux density

induced magnetic flux
density

uniform applied magnetic
flux density

contours in generalized
channel cross section
(see fig. 1)

adjustable parameters
matrix (see eq. (16))

element of matrix [D]
electric field intensity

stationary functional
(see eq. (8b))

stationary value of F

integrals (see egs.
(7a) to (7g))
electric current density

applied or generated elec-
tric current density

dimensionless applied or
generated electric cur-
rent density

characteristic length of
channel

Hartmann number

n

unit normal vector to con-
tours

order of

power delivered to ex-
ternal load per unit
length of channel

dimensionless pressure
gradient

power supplied to fluid by
pressure gradient per
unit length of channel

power dissipated by vis-
cous force per unit length
of channel

power dissipated by surface
viscous force per unit
length of channel

power dissipated by volume
viscous force per unit
length of channel

power dissipated by ohmic
loss in fluid per unit
length of channel

power dissipated by ohmic
loss in walls per unit
length of channel

pressure

surfaces in generalized
channel cross section
(see fig. 1)

dimensionless wall thick-
ness of square channel
(see fig. 2)
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electric potential

dimensionless fluid
velocity

average dimensionless
fluid velocity

fluid velocity
characteristic velocity
z-component of ‘7’
dimensionless potential
dimensionless coordinates
rectangular coordinates
adjustable parameters
adjustable parameters

variational operator

Y

V]

fw
Superscript:
T

fluid viscosity

generalized adjustable
parameters

magnetic permeability of
free space

fluid density

fluid and conducting wall
electrical conductivities

ch/of
matrix (see eq. (16))

evaluation of quantity on
fluid or wall side of
contour

transpose of matrix
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